
– WHITE PAPER –

Integrating a Depth Camera in a Tabletop Setup
for Gestural Input On and Above the Surface

Nadia Haubner, Johannes Luderschmidt, Simon Lehmann, Ulrich Schwanecke, Ralf Dörner
RheinMain University of Applied Sciences

Unter den Eichen 5, 65195 Wiesbaden, Germany
{nadia.haubner, johannes.luderschmidt, simon.lehmann, ulrich.schwanecke, ralf.doerner}@hs-rm.de

We present a system for the detection of gestural input
above a tabletop environment employing a depth sensing
camera that is mounted over the surface. We discuss the
challenges when combining both systems and offer ac-
cording solutions. We employ computer vision methods
to actually detect gestural input in the camera’s depth im-
ages. Our detection currently works with two depth sens-
ing techniques: low-cost structured light and high-end
time-of-flight. We have built a combined setup by mount-
ing a depth camera above an existing interactive tabletop
system based on infrared (IR) light illumination. A depth
camera that employs IR illumination interferes with table-
top systems that also use IR illumination. One result is
that only the structured light based depth camera works
smoothly with our tabletop system. It has the potential
to enhance other tabletop setups based on IR illumination
techniques. Our system complements tangible interaction
on tabletops with gestural input above and around the sur-
face. The presented solution paves the way for new hybrid
gestural interaction techniques. We exemplify a few such
techniques like hybrid hovering, proxemic interaction or
multi-user interaction.

1 INTRODUCTION

With the advent of the depth camera Microsoft R© Kinect1,
depth sensing technology based on infrared (IR) illumi-
nation has become widely available at low prices. Since a
range of novel interaction techniques will be possible, it is
a well invested effort to deal with the question how such a
camera can be employed. As there are many professional
and home-made tabletop systems based on low-cost IR
light illumination like frustrated total internal reflection
(FTIR) or diffused illumination (DI), it is also of interest
if and how both low-cost systems can be combined and

1http://www.xbox.com/kinect

which kind of new interaction techniques this combina-
tion offers.

So far, in the field of human computer interaction, depth
cameras have amongst others been employed to recognize
gestural user input in games and in the field of interactive
displays. Games like those for the Kinect system use the
whole body of a player as an input device. For the inter-
action with displays, users can, for instance, control ap-
plications with gestures like in [5]. For such applications,
the user faces the camera (front-view) to detect input of
hands, arms and of the whole body. Depth cameras are
also applicable in tabletop environments where they have
for instance been used to create height maps of objects
on the surface [10, 14] or to track touches [15]. Con-
trary to front-view setups, most of the existing tabletop
approaches mount the depth camera above the tabletop
facing the surface (top-view). In a top-view setup, a cam-
era can monitor the whole tabletop environment and users
dispersed around the table do not occlude each other.

However, the existing tabletop environments with in-
tegrated top-view depth camera only allow for a small
range of gestural input. To detect gestural input in a top-
view setup, a different algorithmic approach is necessary
as compared to a front-view setup to segment, detect and
track arms above the surface. Additionally, so far IR illu-
mination depth cameras have not been combined in a top-
view setup with tabletop environments that are based on
IR illumination techniques like FTIR or DI. Therefore, the
integration of such a camera into tabletop environments
poses a technical challenge since interference may lead to
undesirable effects.

The contribution of this paper is the discussion of all
major issues when a depth-camera is combined with a
tabletop environment: Firstly, we propose a computer vi-
sion approach to segment, detect and track gestural in-
put with top-view depth cameras. Secondly, this paper
presents a top-view setup of a depth camera with a table-

WHITE PAPER 2

top environment based on DI. For the purpose of compari-
son with the low-cost Kinect, we have also tested the high-
end time-of-flight [9] depth camera PMD[vision] R© Cam-
Cube 2.0 2, which turns out to be inferior in comparison
to the Kinect in our setup. Thirdly, we explain technical
challenges and appropriate solutions when a depth camera
is integrated in an IR illuminated tabletop environment.
Fourthly, this paper gives examples for interaction tech-
niques in such a combined setup.

1.1 Outline
We give a brief overview of relevant literature in section
Related Work. Section Setup describes our tabletop envi-
ronment that integrates the depth camera. Section Detect-
ing User Input describes how we detect gestural input on
and above the tabletop. Afterwards, section Integration
discusses problems and solutions related to the IR illumi-
nation of both systems. Additionally, it illustrates how the
setup can be calibrated and describes the communication
of the tracking systems with applications. Before the final
section Conclusion and Future Work, section Interaction
exemplifies how tracked body parts in combination with
tangible interaction can be employed in a tabletop envi-
ronment.

2 RELATED WORK
In [6], Hilliges et al present two different rear projection-
vision tabletop setups to detect interaction above the sur-
face: Firstly, they detect hands from inside of the table
with a standard camera above the switchable diffuser from
SecondLight [7]. The height of hands is approximated
by their brightness in the image. Secondly, they use a
depth sensing camera from behind a holographic screen
that forms the surface of the tabletop. The image on the
screen is rear-projected and the depth camera can moni-
tor through the screen. Therefore, the camera can detect
the exact height of hands behind the surface. Addition-
ally, Hilliges et al consider various forms of interaction in
the air and use shadow rendering to give a feedback about
hand and arm position. Both setups have the drawback
that they require special hardware: For the first setup the
rather small SecondLight screen is mandatory and for the
second setup a holographic screen is necessary. It offers
low display quality that depends heavily on the viewing
angle. The first setup can only approximate the height, the
second setup cannot detect touches on the surface reliably.
In [13], Takeoka et al introduce Z-touch that combines
multi-touch and above the table interaction. Their system
senses the approximate posture of fingers in the proxim-
ity of the surface using multi-layered infrared laser planes
that are synchronized with shutter signals from a high-
speed camera. Their system needs an extensive hardware

2http://www.pmdtec.com

Figure 2: Schematic overview of our setup.

setup and can detect interaction only in the area where the
laser planes are installed.

Several approaches use cameras to detect interaction
above the surface: In [1], Agarwal et al detect high-
precision multi-touch input on an arbitrary surface em-
ploying an overhead stereo camera system. However,
their system is susceptible to strong reflections of the
screen surface and does not take gestural input into con-
sideration. In [12], Schick et al observe user interaction
with large vertical displays from above using regular cam-
eras for 3D reconstruction. Their approach allows a user
to seamlessly switch between touch and pointing to enable
interaction with remote areas of the display via pointing.
However, their research does not consider interaction with
horizontal surfaces making it not suitable for tabletop en-
vironments.

In [4], Dohse et al enhance an FTIR multi-touch table-
top environment with arm-tracking employing a top-view
approach with an RGB camera to assign touches to users
and to improve touch detection reliability. They detect
arms using skin detection. Hence, the system works only
with bare arms and it does not provide depth information.

Depth cameras have been employed in top-view set-
tings in combination with tabletop environments for sev-
eral purposes. In [14], Wilson uses a depth camera to cre-
ate a height map of objects on an arbitrary surface. A driv-
ing simulation game allows players to drive a projected
virtual car over real objects placed on the table using a
game controller. Although users can hold their hands and
arms in the camera view to be used as obstacles in the
driving game, gestural input above the table is not fur-
ther considered. Additionally, the tabletop itself is an ar-
bitrary surface that cannot detect interaction on its own.
A similar approach is employed to create the IncreTable
[10]: Leitner et al use a depth camera over a tabletop onto
which an image is rear- and front-projected. The depth
camera creates a height map of objects on the table. The
IncreTable allows playing a mixed reality tabletop game

WHITE PAPER 3

(a) (b) (c)

(d) (e) (f)

Figure 1: Results at different stages of the arm detection process with the Kinect: (a) raw depth, (b) after preprocessing,
(c) after initial segmentation, (d) after cleaning segments, (e) after merging segments, and (f) the detected
arms.

inspired by The Incredible Machine: A user can create
and play a game with virtual and real objects. As with
Wilson’s approach, the table does not allow for touch or
gestural input. However, users can employ an interactive
pen to create the game boards. In [15], Wilson uses a
Kinect that is mounted above an arbitrary surface to de-
tect touches. This is achieved by looking only at pixels
of the depth image that lie in an interval just above the
surface. However, complementary gestural input to touch
detection is not considered. In LightSpace [16], Wilson
and Benko employ multiple depth cameras and projectors
to enable interaction on arbitrary horizontal and vertical
uninstrumented surfaces onto which images can be pro-
jected. LightSpace allows for various forms of interac-
tion: To create a connection between displays and points,
a user touches two different surfaces at once. Using an-
other form of interaction, user may hold their hand next
to the surface to pick up an object from the table and vice
versa. Touches can be detected by employing the ap-
proach from [15]. In the LightSpace setup, the surfaces
are uninstrumented and not capable of tracking tangible
interaction on their own. Hence, LightSpace needs an ex-
tensive installation and does not allow for the enhance-
ment of existing tabletop setups. Additionally, rather than
employing sophisticated tracking algorithms, LightSpace
works on the raw 3D mesh obtained from the depth cam-
eras. Thus, LightSpace does not allow to detect high-level

properties like exact arm positions, which are crucial for
the detection of gestural input above the surface.

To conclude, there are various approaches that extend
tabletop systems with in the air interaction. However, ei-
ther they do not provide an interactive surface or they need
extensive hardware setups. In the presented approaches,
no system combines a standard IR illuminated tabletop
setup with a depth camera that allows for on and above
the surface gestural interaction.

3 SETUP

This section introduces our setup consisting of two sys-
tems: We employ an interactive tabletop surface for two-
dimensional touch and tangible object interaction. For the
detection of three-dimensional gestural input above and
around the tabletop, we use a depth camera that faces the
surface giving a top-view on the tabletop. Figure 2 il-
lustrates the setup in a schematic overview and figure 7
shows a photo of the setup.

The tabletop system is custom built. The screen is
divided in halves and houses two display technologies:
One half is rear-projected and the other half uses an LCD
panel. Both halves have a size of 47” and a resolu-
tion of 1920x1080 pixels. Currently, we only use the
rear-projected panel for interaction. To allow for multi-

WHITE PAPER 4

touch input and marker-based object recognition on the
rear-projected part, the tabletop employs DI and a cam-
era inside the table. Any object capable of reflecting in-
frared light resting on the surface shows up in the cap-
tured greyscale image of the camera and can be detected
with computer vision methods. With a height of 55 cm,
the table has approximately the height of a coffee table.

We have tested two different depth cameras based on
active IR illumination independently of each other: the
low-cost Kinect which costs approximately and the high-
end camera CamCube that costs approximately 70 times
more. The Kinect projects a pattern of IR light on the
scene and calculates the distances based on a disparity
map. Its depth image has a resolution of 640 x 480 pixels.
The CamCube is an example for a camera that is based on
the time-of-flight principle [9]. The CamCube illuminates
the surroundings with strobes of IR light and calculates
the pixel-wise depth image by evaluating the time that re-
flected light needs to return to the sensor. The CamCube’s
sensor has a resolution of 204 x 204 pixels. The distance
between the surface and the camera is about 2 m, which
results in a field of view that covers all of the surface with
a surrounding of approximately 30 cm margin (see figure
2).

The detection of touches and tangible objects on the
surface of the table is performed by our software frame-
work Actracktive. Our software SPIRITED3 detects three-
dimensional user input above and around the tabletop. Al-
though both systems – the tabletop environment and the
depth camera – work independently, their IR illumination
techniques interfere. Therefore, our software has to ad-
dress several challenges. Section Detecting User Input
introduces the independent functionality of Actracktive
and SPIRITED and section Integration describes the chal-
lenges for the software in a combined setup and proposes
appropriate solutions.

4 DETECTING USER INPUT
In our tabletop setup, users are most likely sitting around
the table and reaching towards the center of the interac-
tive surface when interacting with the system. In order to
allow for rich interaction and to obtain information about
the scene using this setup, we developed and implemented
algorithms to detect and track user input on and above the
surface. The input comprises touch, tangible objects and
interaction above the surface.

4.1 Touches and Tangible Objects
On the table’s surface, touches and marker-based tangi-
ble objects are allowed for interaction. While there are
software packages freely available for each individual task

3System for Presence and Interaction Recognition In Tabletop Envi-
ronments using Depth

Camera
Source

Adaptive
Threshold

TUIO
Dispatcher

Noise
Filter

Finger
Detector

Finger
Tracker

Adaptive
Threshold

Fiducial
Detector

Fiducial
Tracker

Coordinate
Transform.

Figure 3: Overview of the processing steps used for de-
tection and tracking of touches and fiducials on
the table’s surface.

and some also try to integrate both, we use our software
framework Actracktive for flexible integration of com-
puter vision based algorithms for input detection.

Actracktive allows for a freely configurable graph of
processing components that are executed continuously.
The detection algorithms we use are based on the freely
available software CCV 4 for touches and the fiducial
tracking library developed by Bencina et al [2] for tan-
gible objects. We implemented appropriate components
to use these algorithms in our framework. The config-
uration we use is shown in figure 3. It consists of two
distinct pipelines, one for each detection algorithm. Both
pipelines access the already noise reduced camera image
and proceed to process it with different parameters ac-
cording to the needs of the detection algorithm. Touches
are generally larger than the fiducials’ components, and
thus different thresholding parameters are needed.

The detection of touches results in a logical represen-
tation that contains the two-dimensional position, speed
and acceleration of the fingertip. Fiducials have the same
representation, but with additional information about the
rotation.

4.2 Interaction Above the Surface

In order to detect interaction above the surface, we de-
veloped an algorithm that is optimized for the detection
of arms, which reach into a volume above the interactive
tabletop by analyzing the height map of the depth camera.

4http://ccv.nuigroup.com

WHITE PAPER 5

(a) (b) (c)

Figure 4: Infrared light captured by the camera inside the tabletop system with (a) no depth camera, (b) the Kinect,
and (c) the CamCube.

It is composed of a preprocessing on the raw depth data,
followed by a segmentation and the detection of arms. Af-
terwards a simple arm tracking algorithm is performed.

4.2.1 Preprocessing

We obtain frames, where each consists of 640 × 480 pix-
els with the Kinect sensor and 204 × 204 pixels with the
CamCube respectively. To reduce computational costs in
further processing steps of the algorithm and to compen-
sate for the distortion in the raw depth data, e.g., caused
by reflection and quick movement, we apply one step of a
Gaussian pyramid to compress and filter the image. Thus,
we get an image composed of 320 × 240 pixels for the
Kinect and 102 × 102 pixels for the CamCube.

4.2.2 Segmentation and Detection

Our segmentation algorithm is similar to an approach pre-
sented in [11]. Here, the segmentation of arms is com-
posed of three steps. First, an initial segmentation is con-
ducted by sequentially scanning the depth image once and
assigning each pixel to a segment depending on the eu-
clidean distances in the depth value. In the second step,
small segments are merged into larger ones by minimizing
the inter-cluster variance. Finally, a hierarchical merging
of adjacent segments is performed using the minimal total
scatter of the combined cluster as criterion.

Our approach performs an initial segmentation simi-
lar to the algorithm described in [11]. In this step, adja-
cencies of segments that are useful for merging segments
are stored in a matrix. Afterwards, segments consisting
of less pixels than an empirically found threshold are re-
moved to compensate for segments arising from distortion
in the depth data. The following merging step is where our
approach differs essentially from [11]. In their approach,
both merging steps weight all three dimensions equally to
calculate the inter-cluster variance and total scatter. Since
arms have an elongated shape, two segments of the same
arm, e.g., forearm and upper arm have a rather high inter-
cluster variance and total scatter. In comparison, both
measures are smaller for two segments coming from dif-
ferent crossing forearms. As a consequence two crossing

arms would be more likely merged than two segments,
which belong to the same arm. To limit the distance us-
ing depth is not an option to avoid this problem as users
might not always be holding their arms in parallel to the
xy plane, i.e. the table surface.

In our approach, only one merging step is conducted
instead of two steps as proposed in [11]. We use the
euclidean distances to the common regression plane of
two segments as the merging criterion. The detailed pro-
cedure is described in the following. Considering a set
of segments S = {si|i = 1...n} where si = {pik =
(xk, yk, zk) ∈ R3|k = 1...mi} resulting from the ini-
tial segmentation step, for each si a set of adjacent seg-
ments Ai = {sj |sj ∈ S and sj adjacent to si} has been
determined in the same step. Two segments are defined as
adjacent if they lie in a k-neighbourhood to each other in
the depth image raster. Let sij = si

⋃
sj be the combined

segment of each pair of si and sj and R = (r, ~n) the re-
gression plane with r being a point on R and ~n being the
unit normal vector of R. The average distance d of sij to
Rij is

d(sij , (r, ~n)) :=
1

|sij |
·
|sij |∑
k=1

(
(skij − r) · ~n

)
.

The best adjacent segment sbesti is determined as

sbesti =

argmin
sj∈Ai

(
d(sij , Rij)

)
, if d(sij , Rij) < TS ,

∅, else

where TS is a predefined threshold that has been found
empirically. Finally, two segments are merged as
si
⋃
sbesti until no more matches are found.

The detection of arms is again based on the approach
presented in [11]. We make use of the elongated shape of

arms and use the eccentricity e =
(
λ0−λ1

λ0+λ1

)2
∈ [0, 1] with

λ0 and λ1 being the length of the two largest principal
components of a segment and λ0 > λ1. The larger e, the
more elongated is a segment and we classify a segment as
arm if e is larger than an empirically found threshold.

An arm is represented by an ellipsoidEa resulting from
a principal component analysis of the arm’s segment. The

WHITE PAPER 6

(a) (b)

Figure 5: Depth data acquired by the Kinect (a) without
and (b) with enabled direct illumination from
the tabletop system.

three components a, b and c and the centroid d are rep-
resented in a matrix A = [a, b, c, d] ∈ R3×4, which is
passed to the application.

4.2.3 Tracking arms

A simple tracking algorithm based on the euclidean dis-
tance between the centroids of extremities in the previous
frame and the centroids of extremities in the current frame
is implemented. Two segments s1 and s2 in sequential
frames Ii−1 and Ii with i = 1...n have the same track-
ing id if |c1 − c2| < TA, c1 and c2 being the centroids of
s1 and s2 respectively and TA being an empirically found
threshold.

4.2.4 Implementation and Discussion

To retrieve depth data, we use the SDK provided by
PMDTec for the CamCube, and the Open Source library
libfreenect provided by the OpenKinect project 5.

The implemented algorithm works at interactive frame
rates and is able to detect and track arms reliably. As the
algorithm detects all elongated shapes, it cannot discrim-
inate elongated objects from arms. Moreover, if a user is
holding an object in the hand, the object cannot be sep-
arated from the arm. Figure 1 shows the results of the
different steps of the algorithm exemplarily. We also re-
alized first applications using SPIRITED, e.g., for hybrid
hover interaction as shown in figure 9.

5http://openkinect.org/wiki/Main Page

(a) (b)

Figure 6: Depth data acquired by the CamCube (a) with-
out and (b) with enabled direct illumination
from the tabletop system.

5 INTEGRATION

When not used in a combined setup, the input detec-
tion software Actracktive and SPIRITED works reliably.
However, as we aim to integrate both systems, we have
to address the challenges caused by the usage of infrared
light by both systems. Additionally, it is mandatory to
bring all detected objects into a common coordinate sys-
tem and also to define a format to use for sending the input
to the application. In the following, we discuss the neces-
sary steps to achieve an integrated setup.

5.1 Technical Aspects/Challenges

As the whole setup is based on sensing infrared light of
roughly the same wavelength (near-infrared at about 850
nm), the separation of the different light sources is the
main challenge of an integration. In general, the detec-
tion of touches on the surface will be potentially disturbed
when the area around the finger is lit by any light with
the same or higher intensity than that used by the table
itself. The Kinect faces the same problem and will gen-
erally be unable to measure depth in areas where the pro-
jected pattern hits a surface illuminated by some other in-
frared light source. The CamCube, however, can hardly
be disturbed by external light sources as its own light is
emitted at a high intensity and additionally is pulsed at a
high frequency (around 20 MHz). Thus, it can obtain a
depth image with only minor decrease in quality even if
other light sources illuminate parts of the scene.

These different levels of robustness to external influ-
ences show that it is not possible to arbitrarily combine
the different devices. In the following, we show the re-
sults of the device combinations and how they influence
each other.

WHITE PAPER 7

Figure 4 shows how the camera of the tabletop system
reacts to the presence of the depth cameras. In compar-
ison, it becomes clear that the two kinds of depth cam-
eras have a drastically different impact on the tabletop
system. The Kinect causes bright but small dots to ap-
pear, which can be easily filtered out prior to the touch and
object detection. The bright, flashing lights of the Cam-
Cube make it impossible to detect anything on the surface
with Acktractive. Figure 4(c) is captured when the Cam-
Cube’s lights were fully switched on. During operation,
the brightness of the table’s camera image flickers heavily.
The flickering pattern depends on the capturing frequency
of the CamCube and the table’s camera respectively. This
rules out using the CamCube for a general integration into
our setup, as it would require a separation of the infrared
light of the tabletop system and the CamCube. A hard-
ware solution could be to use a wavelength for the IR illu-
mination in the table that differs from the depth camera’s
illumination wavelength. An optical bandpass filter on the
table’s camera could then filter out the light from the depth
camera. A software solution could filter out all frames
that are overexposed by a flash of the CamCube and use
only those that were taken between two flashes. While an
implementation should be feasible, it would drastically re-
duce the frame rate of the tabletop system and thus result
in a worse tracking performance.

Still, the Kinect has an influence on the tabletop’s in-
put detection, as the small dots might be interpreted as
touches. In order to make the existing systems work to-
gether, only a slight modification of the processing com-
ponents parameters are necessary. It is important to note,
that the processing configuration does not structurally dif-
fer from the one used in a standalone setup. In case the
system detects the Kinect’s dot-pattern as touches, it is
only necessary to adjust the minimum size of a fingertip
in order to exclude them from touch detection. Another
way to achieve this would be to filter out the Kinect’s pat-
tern based on contrast, but this is not an option with our
system, as the brightness of touches is not higher than the
Kinect’s pattern. When other systems are used, this way
of filtering should be considered, as it allows for an earlier
separation and also allows touches to be the same size as
the dots of the Kinect’s pattern.

Even though the Kinect is better suited for integration,
figures 5 and 6 show that the tabletop system influences
the Kinect’s image significantly in contrast to the Cam-
Cube’s image. Due to the constant, homogeneous infrared
light on the table’s surface, the Kinect is unable to calcu-
late the depth of the surface, but as we do not need any
depth information on the surface, this is actually not an
issue. Interaction performed above the surface occludes
the tabletop’s projected light and thus no modification of
our arm detection algorithm is necessary.

Figure 7: Calibration objects on the tabletop system

5.2 Calibration / Combined Coordinate
System

After physically combining both systems, it is necessary
to define a common input coordinate system C, that al-
lows applications a unified handling of two- and three-
dimensional input. Both systems use internal calibra-
tions that establish local coordinate systems for the ob-
jects tracked by each system. As applications running on
the tabletop system use the display coordinate system for
their output, it makes sense to establish the common in-
put coordinate system in terms of the display coordinate
system. Thus, we define C as a left-handed coordinate
system with its origin at the upper left corner of the dis-
play. The x and y axes are defined by the display coor-
dinate system and the z axis is defined perpendicular to
the xy plane (and because of the left-handedness, it points
upward from the table).

5.2.1 Touch/Props

The surface tracking system of the tabletop uses a two-
dimensional coordinate system that is equivalent to the
display coordinate system. Therefore, it does not need
any transformation, as it is identical to the xy plane of C.

5.2.2 Depth data

From the raw depth data captured by the Kinect sensor a
set of coordinates

P = {pi = (xi, yi, zi) ∈ R3|i = 1...n}

is determined in the right-handed Kinect camera coordi-
nate system CK . In order to use the information provided
by the depth camera in a tabletop application it is neces-
sary to transform P such that it is in the common coordi-
nate system C.

To obtain the affine transformation T that maps CK on
C, we need to determine twelve unknowns. To achieve
this, we need to know the coordinates of at least four
points in CK and in C. For a higher precision, we es-
tablish nine point pairs to form an overdetermined linear

WHITE PAPER 8

Actracktive SPIRITED

Depth CameraCamera

TUIO
2DCur

TUIO
3DExt

TUIO
2DObj

Application

Figure 8: Overview of the user input processing in
the tracking software and communication with
applications.

system PR = T · PS with PR, PS ∈ R9×3 which can be
solved with a least squares method. To establish the sys-
tem, we arrange nine calibration objects that consist of a
pole with discs attached to both ends on the table surface
as shown in figure 7. Beginning with 5 cm height, the
objects differ in height by two centimeters each to assure
that the centers of the upper discs do not lie in the same
plane. Placing the objects on predefined locations on the
surface, we know the coordinates of the center of each
disc in C and define these as reference points PR. The
order is defined by row starting in the upper left corner
of the tabletop display. In SPIRITED’s calibration mode,
we select the center of each object in the depth image ob-
tained with the depth sensor in the same order to obtain
PS .

5.3 Communication
Figure 8 shows how the user input is processed in the
combined tabletop and depth camera setup. We employ
the TUIO protocol [8] to provide information about
tracked touches, tangibles and body parts to applica-
tions. Touches are sent with the /tuio/2Dcur profile and
tangibles with the /tuio/2Dobj profile.

Although there are TUIO profiles for 2.5D and 3D in-
teraction, these are suitable to convey touches and tan-
gible interaction but not information about body parts.
Thus, we have decided to define our own TUIO profile
called /tuio/ 3Dext that encodes the transformation ma-
trix A sent from SPIRITED (see section Detecting User
Input / Interaction Above the Surface / Segmentation and
Detection).

A /tuio/ 3Dext set message is composed as following:
/tuio/ 3Dext set sid pid ax ay az bx by bz cx cy cz dx dy
dz

sid is the TUIO session ID of the body part. pid
may contain the id of the person to which the body part
belongs.

6 INTERACTION

Our setup allows to implement interaction based on de-
tected body parts in the tabletop environment. This in-
teraction can be combined with touch or tangible object
input on the interactive surface. Hence, it would not make
sense to use above the tabletop interaction for input that
can be performed more easily via touch like selection,
dragging or rotation gestures.

Still, around and above the tabletop interaction can be
used for a broad range of input techniques that comple-
ment touch and tangible object input. In the following,
we exemplify four techniques: hover interaction, hybrid
hover interaction and multi-user interaction.

6.1 Hover Interaction

An example for hover interaction would be the seman-
tic tooltip: a user holds the hand for three seconds above
an interface element on the surface in order to receive
additional information. The time delay is necessary be-
cause the system has to discriminate between intentional
and unintentional interaction. By moving the hand up and
down, different semantic levels of detail of the additional
information can be presented. For instance, if the user
holds the hand for three seconds above a certain point on
a map displayed on the tabletop, the address of this point
is shown. If the hand is raised, more information about
this address becomes available, for example elevation or
current weather information. This interaction technique
would not be feasible with conventional setups because in
a touch setup there is no such thing as a hover gesture be-
cause a finger either touches the surface or not. Addition-
ally, employing a depth camera allows to use the height of
a hand above the surface as a parameter for the semantic
level of detail interaction metaphor.

6.2 Hybrid Hover Interaction

As it could be difficult to keep a hand hovering over
the same UI element while moving it up and down, it
would be a solution to employ hybrid interaction with
above the tabletop input in combination with touch. For
instance, a user performs a hybrid two-handed gesture
by touching an interface element on the surface with
the right hand and hovering over the same element with
the left hand for three seconds to assign the left hand

WHITE PAPER 9

Figure 9: A user performing hybrid hover interaction by
touching an object with the right hand and mov-
ing the left hand up and down.

to the element and the touch (see figure 9 and video:
http://youtu.be/nPyGOceTEGo). Now, there is no need to
keep the left hand hovering over it: As long as the right
hand is touching the element, the left hand stays assigned
to it. Now the user can easily move the left arm up and
down to control the level of detail.

6.3 Multi-User Interaction

When users approach the tabletop environment, they are
monitored by our tracking system. An example for multi-
user interaction would be the assignment of input to a user
as soon as a user touches or puts a tangible onto the sur-
face. The assignment of touches to a user has already been
considered for instance in the DiamondTouch setup [3] or
in Dohse et al’s top-view RGB camera setting [4]. How-
ever, with the DiamondTouch setup, a user has to stand
or sit on a special pad to allow for the detection of the
user, which is not necessary with our approach. Contrary
to Dohse et al’s approach that only detects bare arms, our
system has the potential to recognize all input around and
above the table. Also tangible objects can be assigned to
users. This property can be employed to create an own-
ership metaphor: Every touched interface element or tan-
gible object stores which user touched it the last time and
can be owned by a user. Only users who own an element
or tangible object may manipulate it. Additionally, an el-
ement can orient automatically towards the owner. To for-
ward an element or tangible object, the owner touches it
at first before a second user touches the element. After the
owner released the object, it belongs to the second user.

7 CONCLUSION AND FUTURE
WORK

7.1 Conclusion

In this paper we have presented a system that detects
three-dimensional gestural input above a tabletop environ-

ment with a depth camera. The depth camera monitors the
tabletop environment from above giving a top-view onto
the surface. To detect the input in the top-view setup, we
developed a software that employs computer vision meth-
ods. We tested two different kinds of cameras with our
software: the low-cost Kinect camera and the high-end
CamCube. First results show that the detection works at
interactive frame rates with both cameras. However, due
to a higher resolution, the detection works more robust
with the Kinect.

We have combined our three-dimensional user input
detection system with an interactive tabletop environment
that is based on diffused illumination. The depth cam-
era interferes with the tabletop environment as both work
with IR illumination. Although the gesture input detec-
tion is not disturbed by the light of the tabletop system,
we have figured out that the illumination of the CamCube
interferes too heavily with the tracking of the tabletop.
However, with the Kinect, the tangible interaction on the
tabletop system still works well with a modification of
the image processing in the tracking software. Therefore,
the low-cost Kinect camera offers the potential to extend
many other existing tabletop environments with interac-
tion above the surface.

Gestural input above and around the tabletop comple-
ments tangible interaction on the surface. For instance, we
suggest to use touch interaction in combination with ges-
tural input above the surface for a hybrid hovering tech-
nique to create a semantic tooltip. Additionally, gestural
input on and above the surface provides possibilities for
new forms of multi-user and proxemic interaction in the
field of interactive tabletop environments.

7.2 Future Work

One improvement to our three-dimensional gestural input
detection would be to actually detect which body part has
been detected. For this purpose, it seems to be a promising
approach to employ a skeletal model. However, so far
skeletal models have mainly been considered for front-
view setups where the camera faces a user’s front. By
introducing a skeletal model for a top-view approach, we
should be able to track user’s body parts employing their
skeletal model.

Finally, there is the whole field of exploiting the poten-
tial of the setup introduced in this paper: novel interaction
techniques are to be conceived and evaluated in a cornu-
copia of application fields.

References

[1] A. Agarwal, S. Izadi, M. Chandraker, and A. Blake.
High precision multi-touch sensing on surfaces
using overhead cameras. Horizontal Interactive

References 10

Human-Computer Systems, International Workshop
on, pages 197–200, 2007.

[2] R. Bencina, M. Kaltenbrunner, and S. Jorda. Im-
proved topological fiducial tracking in the reactivi-
sion system. In Computer Vision and Pattern Recog-
nition - Workshops, 2005. CVPR Workshops. IEEE
Computer Society Conference on, page 99, 2005.

[3] P. Dietz and D. Leigh. Diamondtouch: a multi-user
touch technology. In UIST ’01: Proceedings of the
14th annual ACM symposium on User interface soft-
ware and technology, pages 219–226, New York,
NY, USA, 2001. ACM.

[4] K. C. Dohse, T. Dohse, J. D. Still, and D. J.
Parkhurst. Enhancing multi-user interaction with
multi-touch tabletop displays using hand tracking.
In Proceedings of the First International Confer-
ence on Advances in Computer-Human Interaction,
ACHI ’08, pages 297–302, Washington, DC, USA,
2008. IEEE Computer Society.

[5] F. Echtler. Multitouch with hacked Kinect.
http://www.youtube.com/watch?v=ho6Yhz21BJI,
2011.

[6] O. Hilliges, S. Izadi, A. D. Wilson, S. Hodges,
A. Garcia-Mendoza, and A. Butz. Interactions in the
air: adding further depth to interactive tabletops. In
Proceedings of the 22nd annual ACM symposium on
User interface software and technology, UIST ’09,
pages 139–148, New York, NY, USA, 2009. ACM.

[7] S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Vil-
lar, A. Butler, and J. Westhues. Going beyond the
display: a surface technology with an electronically
switchable diffuser. In Proceedings of the 21st an-
nual ACM symposium on User interface software
and technology, UIST ’08, pages 269–278, New
York, NY, USA, 2008. ACM.

[8] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. Tuio - a protocol for table based tangi-
ble user interfaces. In Proceedings of the 6th Inter-
national Workshop on Gesture in Human-Computer
Interaction and Simulation (GW 2005), pages 1–5,
2005.

[9] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-
Flight Sensors in Computer Graphics. Eurographics
State of the Art Reports, pages 119–134, 2009.

[10] J. Leitner, M. Haller, K. Yun, W. Woo, M. Sugimoto,
and M. Inami. Incretable, a mixed reality tabletop
game experience. In Proceedings of the 2008 Inter-
national Conference on Advances in Computer En-
tertainment Technology, ACE ’08, pages 9–16, New
York, NY, USA, 2008. ACM.

[11] S. Malassiotis and M. G. Strintzis. Real-time hand
posture recognition using range data. Image Vision
Comput., 26:1027–1037, 2008.

[12] A. Schick, F. van de Camp, J. Ijsselmuiden, and
R. Stiefelhagen. Extending touch: towards interac-
tion with large-scale surfaces. In Proceedings of the
ACM International Conference on Interactive Table-
tops and Surfaces, ITS ’09, pages 117–124, New
York, NY, USA, 2009. ACM.

[13] Y. Takeoka, T. Miyaki, and J. Rekimoto. Z-touch: an
infrastructure for 3d gesture interaction in the prox-
imity of tabletop surfaces. In ACM International
Conference on Interactive Tabletops and Surfaces,
ITS ’10, pages 91–94, New York, NY, USA, 2010.
ACM.

[14] A. Wilson. Depth-sensing video cameras for 3d tan-
gible tabletop interaction. In Horizontal Interac-
tive Human-Computer Systems, 2007. TABLETOP
’07. Second Annual IEEE International Workshop
on, pages 201 –204, 2007.

[15] A. D. Wilson. Using a depth camera as a touch sen-
sor. In ACM International Conference on Interactive
Tabletops and Surfaces, ITS ’10, pages 69–72, New
York, NY, USA, 2010. ACM.

[16] A. D. Wilson and H. Benko. Combining multi-
ple depth cameras and projectors for interactions
on, above and between surfaces. In Proceedings of
the 23nd annual ACM symposium on User interface
software and technology, UIST ’10, pages 273–282,
New York, NY, USA, 2010. ACM.

