1 INTRODUCTION

Johannes Luderschmidt 31. December 2007
Business Information Service

Royal Holloway University of London

Technological Foundations Of Second Life

1 Introduction

Recently Second Life (SL) has been intensively discussed. SL is a virtual world where (ge-
ographically dispersed) users usually represented by an avatar interact with other users,
objects or agents by means of a client called viewer on their PC that communicates with
a central server grid. SL seems to be the first commercial virtual world that is used by a
big community. As of March 2007 according to the company behind SL Linden Labs 9.5m
users have registered for SL. Averagely 50k of them are concurrently active in 8k to 10k
regions. These 50k users and 10k regions have to be served by a server grid. However,
there is a forecast of 16 million regions, 2bn users and a concurrency of 50m users for
virtual worlds in the future. To serve that amount of users and data sophisticated server
concepts have to be employed.

This report will try to present and critically analyse the current technological back-
ground behind SL. However, for this topic only little information is available in papers
and books because the SL server software is still a proprietary system. Alternatively the
information provided in this report is mainly based on information given by Linden Labs
themselves in their Knowledge Base, their blogs and their Wikis. As the viewer soft-
ware’s source code is published under an Open Source licence plenty of documentation
about it is available online. Despite efforts of Linden Labs to open their server protocols
to the Open Source community as well documentation for the server software is currently
hardly publicly available. Nevertheless, this report tries to interpolate the available online
information to give an overview of the current state of the art of SL’s technological foun-
dations. This overview cannot be more than a snapshot of SL as it is developing quickly.
In depth information is only presented if information was provided by LL. This report
will present the most recent technological developments in SL even if they are still in a

beta or Release Candidate phase at the time of this writing.

2 ARCHITECTURE OF SECOND LIFE

2 Architecture of Second Life

2.1 Second Life as a Virtual World

SL is a virtual world, which was publicly released to the Internet on June, 23rd 2003 (SL
Forum, 2003, [23]). A user can log in to SL with a certain client application called viewer.
This viewer is available for Microsoft Windows, Mac OS X and Linux operating systems
and can be downloaded for free from the Internet. Before a user can log in to SL for the
first time it must be registered for free on secondlife.com. In the virtual world of Second Life
a user’s avatar can own and use clothing, objects etc. called assets, which are available via
an inventory in the viewer. SL has its own currency called Linden Dollar (abbr. L$) that
can be used for payment within the boundaries of SL. The virtual word is subdivided into
virtual land of virtual 256mx256m regions, which themselves can be partitioned by the
owner into parcels. Each region is controlled on the server side by a so called simulator
(see figure 1). Each viewer connects to Second Life via one simulator that is responsible
for the region where a user wants to log in. By default it is the region where the user was
logged in the last time. Every time a user changes between regions it will be passed over
to the simulator that is responsible for that certain region. The viewer receives everything
it needs to display from the simulator. A simulator is a basic server process on a so called
Sim, which is a physical or virtual server with a URL like sim1234.agni.lindenlab.com. It
is possible to run several simulator instances on one Sim. A grid according to Linden
Labs is a collection of Sims. Linden Labs employs several grids for live use, internal and
external testing (Second Life Wiki, 2007, [1]). For each type of grid another kind of viewer
is necessary according to the features and software versions of the used simulator types.
Behind the grid of simulators is a grid of data servers for instance the user server or the
asset server. A simulator serves as a proxy to these databases. Thus every time a user
retrieves an asset with its viewer the data has to be forwarded via the simulator to the

viewer.
2.2 Simulator

A simulator...

e is responsible how a user’s avatar interacts with other avatars and objects in a re-

gion.

e is responsible for saving land parcel states, object states and terrain height map

states.

2.3 Viewer 2 ARCHITECTURE OF SECOND LIFE

Second Life Simulators

e SR

=S ERER
-/?i{i
L L L
L L L

All Hail the Central Databases

Figure 1: Second Life Application Server Structure. Source: [Figurel]

carries out visibility calculations on land and objects and conveys the data to the

viewer.
executes physical calculations with the Havok library (see section 2.4).
is responsible for chat and instant messages.

runs a special instance of the Mono .NET platform (see section 3.1) to be able to run
LSL scripts.

The full performance of a simulator is at 45 fps (Second Life Wiki, 2007, [2]).

2.3 Viewer

The viewer is responsible for client-side activities like downloading necessary data from

the simulator and drawing everything that is visible to a user’s avatar on screen (Second

Life Knowledge Base, 2007, [3]). It takes care for positions of objects and handles velocity

or other physical information and displays them with the according objects. The viewer

does no collision detection as this is task is up to the simulator.

The Second Life viewer is released under an Open Source License and the source code
can be downloaded from the Internet ([31]).

2.4 Physical Calculations 2 ARCHITECTURE OF SECOND LIFE

2.4 Physical Calculations
2.4.1 Functionality of Havok

Inside of Second Life a rigid body physics simulation is employed. All avatars and objects
are dynamic, collidable and moving. For instance if a chair is created a user will be able
to sit on it and if a sphere is tagged to be dynamic it will roll down hills (Secondlife.com,
2007, [8]).

The middleware physics engine that provides algorithms for rigid body dynamics and
collision detection that are necessary for real world calculations is a commercial product
called Havok. It is licensed by Linden Labs from the Irish company Havok ([11]). As
of September 2007 according to the company Havok the current version of the Havok
physics engine is 5 (Havok, 2007, [12]). However, Havokl was the physics engine on
which SL was built on and operated for several years. Havok 4 is the version that is in the
final testing stages for use inside of Second Life.

Tasks for Havok are for instance to figure out what happens when...

e ... something or someone collides with something or someone else. Havok compares

two objects’ speeds and positions.

o ... something or someone is pushed. When two objects collide Havok calculates the

forces on the colliding objects.

e ... friction or damping slows the motion of something or someone. That allows
avatar movement like walking or flying. If for instance an avatar walks up a hill
Havok will take care that the avatar is lifted vertically after each step and the walk-

ing speed is slowed down.

e ... something or someone is in motion and has momentum/energy. The energy
can be calculated with mass * velocity. By using this calculation Havok can add up

energies of colliding objects or avatars.

Source: (SL Wiki, 2007, [10])

2.4.2 Problems of Havok

Havok 1 sometimes had problems when two objects allocated the same space. They could
end up interpenetrating themselves. As a result the simulator could go into a deep recur-
sive loop to analyse the interpenetrating objects that consumes all CPU power and causes

the simulator to wheeze. This incident is called Deep Think condition (Wikipedia, 2007,

4

2.5 Assets 2 ARCHITECTURE OF SECOND LIFE

[13]). Newer versions of Havok have an overlap ejection functionality, which allows to

push apart two separate, interpenetrating objects.

2.5 Assets

An asset is a data resource like an image, sound, script, object, etc. Assets can be down-
loaded to the viewer or uploaded into a central asset store. Each asset has a unique UUID
like. "It’s a 128-bit (16 byte) value which is generated in such a way as to make collisions
very unlikely” (Second Life Wiki, 2007, [32]). This section will describe the asset types
objects, textures and scripts. All assets are stored in a database. They are retrieved by the

client application when a user makes use of them from the inventory.

2.5.1 Objects

An object in Second Life is “a collection of one or more linked” primitives (Second Life
Wiki, 2007, [28]). A primitive (prim) can have different forms and materials (Second Life
Wiki, 2007, [30]). Textures can be mapped onto prims. Figure 2 shows different examples
for prim forms and prim materials. Part 1 of the image shows prim forms like a cone,
torus, sphere or a box that have the material wood. Part 2 shows a so called sculpted
prim: It has the form that is described in a special sculpting texture that consists of 3D
coordinates. This sculpting texture is mapped onto the prim. With the help of a sculpting
texture a primitive can adopt quite complex forms. Part 3 shows different prim modifica-
tions of a cylinder such as cutting. Part 4 shows a cut cylinder with a texture mapped on
it. Additionally prims can have attributes like colour, shininess etc. They also have a field
‘physical’. Objects with “physical” checked are dynamic. A dynamic sphere for instance
will behave like a ball e.g. falling to the ground and rolling down a hill. Dynamic objects
can consist of up to 31 linked prims (Second Life Wiki, 2007, [28]).

2.5.2 Textures

Images (Textures) in SL are encoded by means of the JPEG 2000 wavelet compression
method. By conveying images as image codestreams according to "Appendix A of JPEG
2000 Part I Final Committee Draft Version 1.0 which are decoded in the client and sent to
OpenGL as uncompressed 24 bit or 32 bit textures." (Second Life Wiki, 2007, [4]) By using

that method preloaded parts of the image can be shown on objects.

2.6 Networking 2 ARCHITECTURE OF SECOND LIFE

Figure 2: Primitives in Second Life.

2.5.3 Scripts

Scripts are stored in two types in the asset system. As will be explained in section 3.1 the
SL scripting language is LSL and scripts are being compiled to byte code and being run
by a virtual machine. To enable a user to (re-)edit LSL code in Second Life the system
stores as well the source code as the byte code as an asset in the asset system (Second Life
Wiki, 2007, [5]). Scripts themselves are being edited directly in SL from the inventory by

the user.

2.6 Networking
2.6.1 Login

A user can connect to Second Life by submitting its login data with its viewer. Alterna-
tively a user can click on a so called SL URL in a browser, which will start the viewer
and connect automatically with the stored login data. In a SL URL a location inside SL'’s
virtual world can be encoded by means of SL coordinates.
E.g. clicking http:/ /slurl.com/secondlife /Neu%20De%?20Island /122 /77 /23 / ?title=Beach/
will connect the viewer to the simulator called "Neu De Island" and will put the user’s
avatar onto the coordinate 122/77/23.

In either of both possibilities (connecting manually with the viewer or by clicking a SL
URL) the user’s viewer will call a CGI script that runs behind the URL

3 SCRIPTING

login.agni.lindenlab.com. This script verifies user name and password and decides to which
simulator it connects the viewer. If a URL was given by clicking a SL URL then the script
will try to connect to this simulator. Otherwise it will look up the simulator to which the
user was logged in the last time. If the simulator verifies that a user is allowed to log in
to it the CGI script will tell the simulator that this user’s viewer is about to connect and
sends the address of the simulator to the viewer (Second Life Wiki, 2007, [2]).

2.6.2 Circuits and Messages

In SL connections between viewers and simulators, simulators and simulators or simula-
tors and utility servers (e.g. database servers) are called circuits, which are being provided
as two-way UDP connections (Second Life Wiki, 2007, [6]).

Communication via circuits is established by the means of so called messages, which
bear a strong similarity to UDP datagrams. Messages are being used to send serialised
information about nearly any part of the system between hosts on the network. There are
more than hundred different message types inside of SL that have all the same message
format (Second Life Wiki, 2007, [7]). For further information about the format of messages

and the messaging system please refer to [7].

2.6.3 Asset Transfer

Assets are requested by the viewer from an upstream provider. The appropriate upstream

provider is the simulator to which a viewer is connected (Second Life Wiki, 2007, [5]).

3 Scripting

In Second Life independent, event-driven programs written in the programming lan-
guage Linden Scripting Language (LSL) can be attached to every object in a region. For
instance with an LSL script an object can become an independent agent like a fish search-
ing for food, or an object that hands out notecards when touched. Programs can also be
used to perform calculations, which are totally different from SL like SETT at home (Berke-
ley, 2007, [14]). As there are regions running more than 1000 scripts execution of scripts on
simulators is a non-trivial problem. Section 3.1 will explain how this execution is accom-
plished by a simulator. Section 3.2 will explain different features of the scripting language
LSL. Scripts are being developed inside of the viewer and are directly saved to the asset

server (see section 2.5.3).

3.1 Microthreading with Mono 3 SCRIPTING

3.1 Microthreading with Mono
3.1.1 Microthreading

1000 scripts running in one region can be a big problem. If for instance 1000 scripts were
run in separate system threads and each thread stack allocated only 32k of memory those
scripts would lead a Linux operating system with the newest stack libraries to crawl (Of-
ficial Linden Blog, 2007, [15]). Another question is how scripts can be migrated between
two regions. If for instance a rocket flies from one region to the next the simulators that
run these regions will have to migrate the script between those two regions.

SL solves this problem by employing microthreads based on .NET technology. Mi-
crothreading is injected into LSL script assemblies by means based on RAIL on top of
NET Reflection and .NET Reflection.Emit facilities. Therefore the injector looks for loca-
tions in the script assembly where the script code should yield and induces the type of
stack at these locations. Now extra opcodes are inserted into the script assembly, which
effect to copy the stack into a heap object and the script to yield. Afterwards another
script instance can be restored from its heap object and being run. Employing this proce-
dure many microthreads can be run within one system thread (Official Linden Blog, 2007,
[15]).

This approach is efficient in terms of memory but expensive in terms of used CPU

time to shift between microthreads and to insert opcode.

3.1.2 Mono

The foundation for Second Life’s microthreading functionality is Mono. Mono is an Open
Source software that implements the .NET platform developed by Microsoft. It includes
a Common Language Interface (CLI) virtual machine. The CLI bears a Common Lan-
guage Runtime (CLR), which can execute Common Intermedia Language (CIL) byte code
programs. Therefore source code of programming language that should be used with a
NET platform needs to be compiled to CIL. The CLR compiles the CIL during runtime to
machine code by means of a Just In Time (JIT) compiler.

Scripts written in LSL are being compiled to CIL byte code when the developer saves
the code in Second Life. The asset server saves the source code as well as the byte code
(see section 2.5.3). Before Mono has been introduced LSL code was executed by an LSL
interpreter. According to Linden Labs LSL code that is being executed within Mono is
300-500 times faster than the former LSL interpreter. Another advantage of using .NET

for script execution in SL is that every programming language to which a CIL compiler

-

32 LSL API 3 SCRIPTING

exists could be used as a programming language in SL in the future if the LSL API was
transported to other languages. Additionally other APIs could be used within SL (Official
Linden Blog, 2007, [15]).

3.2 LSL API

The LSL API offers language constructs for different purposes. One purpose is for in-
stance the manipulation of size, position and rotation of a 3D object. Other purposes
could be for instance interaction with avatars, chat communication within one region (see
section 3.2.3) or communication with servers on the Internet (see section 3.2.4).

Whenever a new script is created in SL following default script is presented:

default

{
state_entry ()

{
11Say (0, "Hello, Avatar!");

touch_start(integer total number)

{
11Say (0, "Touched.");

Listing 1: LSL default script.

As LSL is state driven each script can enter different, predefined states. In this ex-
ample only default is implemented. default describes the default state. state_entry() and
touch_start() are event listeners. If for instance this script is put in an object everytime
the script is saved state_entry () will be called because the script was started and the API
function 11Say () will echo out "Hello, Avatar!" on the chat console. On the other hand

everytime an avatar touches the object will say "Touched." on the chat console.

3.2.1 Basics

LSL uses typed variables like float g_target_distance. LSL offers the simple data types
integer, float, string, vector, rotation, key and list. rotation consists of four vectors that

define a rotation. key is a type that references the UUID of an asset. list is an array like

32 LSL API 3 SCRIPTING

data type that offers additional manipulation possibilities (for details see [16]). However,
there is no dedicated array data type.

LSL uses arithmetic operators for assignment (=), hexadecimal entries (e.g. 0xff),
boolean operators (e.g. <, >, !), binary arithmetic operators (e.g. +, -, *, /, «, ») and bitwise
operators (&, |, ~).

LSL offers language constructs for flow control like for, do—while, if —else, jump, return,

while and state. state can be used to switch to another state. E.g.
state SpinState;

will switch to the state SpinState.
Also LSL offers the possibility to define functions e.g. the signature setMatch(string
homeTextur) would define a function with the name setMatch with one argument called

homeTextur of the type string.

3.2.2 States and Events

LSL employs an implicit state machine with at least one state (the default state). When a
script is reset or first started, it will enter the default state. States contain event handlers,
which are triggered by the LSL virtual machine (see listing 1).

The most important event handler is state_entry(). It is called whenever a state is
entered e.g. by calling state SpinState; the state SpinState will be entered and the event
state_entry will be triggered.

Multiple events exist for different purposes. For instance there are certain event lis-

teners of an object that can be used ...

e ... as a sensor to trigger actions if avatars pass by within a certain distance around
the object.

... to receive and react to emails.

e ... to receive and process data from the Internet.

e ... to react if being touched by avatars.

e ... to trigger events after a timer had run out.

e ... to perform actions after being pulled from a users inventory in world.

e ... to perform actions while moving.

10

32 LSL API 3 SCRIPTING

e ... to react after money was paid to the object.

e ... to listen to ongoing communication on an island (e.g. to listen to the chat engine).
For instance this can be used to create intelligent agents that communicate with

avatars.

Please refer to [18] for more information on events.

3.2.3 In-World Communication

Inside of a region there are different means of communicating with each other. A com-
mon method is to use the chat engine. A user just enters some text in the text field of its
viewer and presses enter. This text now appears in the viewers of all avatars within a cer-
tain surrounding. Additionally instant messages can be sent from one avatar to another
without being visible to other users. SL employs a channel concept for communication.
Communication can take place on up to 2,147,483,649 channels. Channel 0 is the public
channel that is used by default from the chat engine.

Communication tasks can be carried out as well by objects with an attached LSL script.

The LSL API offers several functions for this purpose:

lISay outputs some text in the viewers of avatars within chat distance.

lIShout outputs some text in the viewers of all avatars in a region.

IlWhisper outputs some text in the viewers of all avatars within whisper distance.

lIEmail sends an email.

llinstantMessage sends an instant message to a certain avatar.

llListen listens to chat on a certain channel and can react on certain keywords.

Listing 2 shows a simple voting script that employs events and functions from the LSL
communication API. An object in which this script is placed will start to listen to avatars

"

that touched them at least once. The listening is triggered via 1lListen (0, ", toucherKey, "").
That causes the script to listen to avatars that touched it at least once on the public channel
0. Everytime the avatar with the UUID toucherKey submits a message the script figures

out if it starts with "/vote". If so it will extract the text after "/vote".

11

1

2

3

4

32 LSL API 3 SCRIPTING

default{
touch_start(integer total number){
key toucherKey = IlDetectedKey (0);
l1IListen (0, "", toucherKey, "");

// user submits something like "/vote Bubo Lubitsch" to vote
listen (integer channel, string name, key id, string message){
string command = "/vote";

integer startStringLength = 11StringLength (command);

if (11GetSubString (message,0,startStringLength)==command) {
string votedFor = 1l1GetSubString (message,
lIStringLength ("/vote")+1,
lIStringLength (message));

//treat extracted name...

Listing 2: Simple vote script in LSL.

3.2.4 Internet Communication

LSL scripts in Second Life can communicate with the Internet by the means of XML-RPC
or HTTP. However, XML-RPC does communicate over HTTP as well. The approach to
communicate with the Internet via LSL scripts is provided in a typical LSL manner. At
first a request is sent with a request function of the LSL API or an XML-RPC event is
triggered by a function call. Afterwards specific event handlers will (send requests and)
receive the responses.

In listing 3 the procedure for sending XML-RPC requests as well as HTTP requests
in LSL is illustrated. Whenever this script is started an XML-RPC event is triggered
via llOpenRemoteDataChannel() in line 4, which causes the script to trigger the event re-
mote_data in line 11. The type of the event triggered by this function is REMOTE_DATA _
CHANNEL (line 16), which causes the code in line 17 of the listing to send an XML-RPC
request (over HTTP) via IIHTTPRequest to url. A reply from url will automatically have
the type REMOTE_DATA_REQUEST. In this implementation the received data would be
echoed out to chat in line 22. In the case of XML-RPC in SL all requests and responses

12

1

2

3

4

5

6

12

13

14

16

17

18

20

21

22

23

24

25

26

27

28

29

30

32 LSL API 3 SCRIPTING

are handled by the CGI script http://xmlrpc.secondlife.com/cgi-bin/xmlrpc.cgi. Each
object may only send one request at a time that is queued on xmlrpc.secondlife.com. Any
additional request that is sent from this object before the preceding request was treated
by xmlrpc.secondlife.com will overwrite the previous one. Additionally a response com-
ing from an external server will be delayed for three seconds. As the performance of
xmlrpc.secondlife.com has been steadily degrading XML-RPC requests can take up to 60
seconds before they are completed (LSL Wiki, 2007, [19]).

default{
state_entry () {
l1OpenRemoteDataChannel () ;
}
touch_start(integer foo){
IIHTTPRequest (URL, [] ,"");

//xml rpc event handler
remote_data(integer type,
key channel, key message_id,

string sender, integer ival, string sval){

//sends request after calling llOpenRemoteDataChannel ()
if (type == REMOTE DATA CHANNEL) {
IIHTTPRequest (url ,[HITP METHOD, "GET"] ,"");

//handles incoming answers
if (type == REMOTE_DATA_REQUEST) {
11Say (0,sval);

//http response handler

http_response (key request_id, integer status,
list metadata, string body){
11Say (0,body);

13

4 SECOND LIFE SEARCH ENGINE

Listing 3: Internet communication with LSL.

Requests must always be directed from Second Life to the Internet. It is not possi-
ble to send a request from the Internet to a facultative object in Second Life. Because of
this resources coming from the Internet that should be used in Second Life need to be
pulled by the objects themselves from SL. In listing 3 the responses are only echoed to
chat. Usually they would be proceeded by LSL code. As LSL does not offer an API for
XML processing the treatment of string data must be implemented manually. Also there is
an additional 2048 byte limit for the payload of an XML-RPC request forwarded by xml-
rpc.secondlife.com to the according script (Second Life Wiki, 2007, [33]). If for instance
information encoded in an RSS feed should be forwarded to Second Life a sophisticated
server side preprocessing of the XML information will be necessary. In this case all tags
should be removed and replaced by stop codes that can be recognised by the processing
LSL script to save bandwidth. E.g. <key>name</key><value>Johannes</value> could be
encoded to :—:name%johannes:—:. If the data that should be conveyed is still bigger than
2048 bytes it needs to be subdivided in more XML-RPC requests. That means for every

XML schema a new server side and LSL side implementation is obligatory.

4 Second Life search engine

In a virtual world consisting of more than 9.5m users and more than 8k regions sophis-
ticated search possibilities are crucial. Especially for Second Life where virtual business
with virtual goods like clothing takes place it is important that a user can find those goods.
In the past there was no simple way to find a green pair of shoes in SL. At the time of this
writing Second Life recently changed their search system. Now the new search tool in
Second Life ranks search results according to relevance and not alphabetically or accord-
ing to the fact how much traffic they generate. However, objects can only be found if they
were correctly tagged in their properties (Technology Review, 2007, [21]). The new search
system is provided by off the shelve Google search appliance products that were inte-
grated in the SL server system. These appliances perform indexing and produce search

results. Assets that can be found include:

o Objects (if search checkbox is checked. If an object is tagged "for sale" it is per default

searchable.)

o Land Parcels (if fee of 30L$ is paid by parcel owner)

14

5 CRITICAL ANALYSIS

e Groups
e Avatar profiles (can be switched off for own avatar but is switched on per default)

e Events

The order of search matches is provided by the Google search algorithm, which means
that they are ordered by relevance e.g. how close search terms are together (Official
Linden Blog, 2007, [20]). Objects on the asset servers that are searchable are being ren-
dered/updated to static HTML pages on world.secondlife.com twice daily (3 AM and 3
PM Pacific time). However, it takes one to three days for those updates before they are
reflected in the search results (Second Life Knowledge Base, 2007, [22]). The static HTML
pages are public and could be found as well on web search machines like Google. But

currently public search machines are not explicitly asked to crawl them.

5 Critical Analysis

Second Life is the first virtual world with a really huge community of around 9.5m users
in March 2007. The steadily growing amount of users and especially concurrently active
users demands sophisticated server concepts to allow parallel activity in a region. In
section 5.1 the server concepts of Second Life will be analysed with regard to scalabilty
and performance. Section 5.2 dissects the opportunities for users to enhance Second Life

with information retrieved from the Internet or imported contents.

5.1 Grid
5.1.1 Problems

Second Life employs a one simulator per region approach. Additionally the server per-
forms the main part of the physical calculations (see section 2.4). Because of these two
facts the amount of avatars in one region is restricted. According to the Second Life
Knowledge base the amount of avatars in one region without causing a serious server
lag is about 40 ([24]). 40 people in an area of 65k m?2 is a fairly small amount of people
especially for big events. On the other hand there will be lots of areas that are hardly used
at all at the same time during others are crowded. It seems that the current Second Life
Grid solves scalability issues fairly unsatisfying.

Another problem is the solution of maintenance tasks for the grid. If the simulator

software changes because of security or feature releases the simulator must be halted,

15

5.1 Grid 5 CRITICAL ANALYSIS

the new software installed and the simulator booted. As Second Life is used around the
world there is no time slot in which the system is not or only scarcely used. Additionally
for some simulator releases the download of a new viewer is obligatory. The size of the
viewer software is around 40 MB. According to the experience of the writer of this text the

download of a new viewer is necessary around every four weeks.

5.1.2 Linden Labs Future Plans

A problem of the Second Life community is the binding of regions to the proprietary
software on the Second Life grid. Some users and/or companies wish to maintain their
own server(s) with their own land on it. This would demand heavy changes from the
current concept to enable seamless collaboration of Linden Labs own simulators with
foreign ones.

According to Christian Scholz, one of the members of the Second Life Architecture
Working Group ([35]), Linden Labs want to enable collaboration of simulators by provid-
ing open communication protocols for the communication between the necessary parts
of the server system. However, they are not planning to publish their simulator source
code under an Open Source licence because of proprietary parts like the Havok physics
library in it. Nonetheless, alternative implementations of simulators could be realised like
OpenSim (Open SL, 2007, [25]). The current server architecture illustrated in figure 1 is
considered to be changed to the architecture illustrated in figure 3. Blue areas are Agent
Stores. Agent Stores offer services like storing avatar and inventory data, login of avatars
or retrieval of user data. The green areas are Region Domains, which are going to provide
similar services like simulators today. Avatars can change between regions. These types
of Domains and Stores offer well defined interfaces to their services. Basically a Store or a
Domain can consist of any amount of computers and databases. A user logs in to a Store
and can enter a Region with its viewer. Second Life will still have their own server sys-
tem and user data indicated by Second Life Agents and Second Life Mainland. Additionally
Linden Labs will offer central utilities like the currency system, a centralized search or a
map of locations (Christian Scholz, 2007, [34]).

5.1.3 Improvement Notes

Linden Labs themselves show that they are planning to open up their system to other
implementations of the server system. However, the problem of a better scalability of one
or multiple simulators remains. If one simulator is idle and another suffers from lags the

server system should be able to schedule simulator tasks in a way that idle simulators

16

5.1 Grid 5 CRITICAL ANALYSIS

Central Utilities
Second Life Agents

: E € identity
XYZ Co. Employees LEl B 'u-
J T l = _I_ . .- " e N Flocation
S AT N D "."
m L$Curlenc\.r
L
- g Paearch
Viewer
Kl
Bl BN | Second Life Mainland)
: : L E B
X¥Z Co. Reseanch Land S ——
Open Land
ki
I- I . Second Life Self-Host .
————

Alt. Continent OF'S Larage

Figure 3: Future Second Life Server Structure. Source: [Figure2]

can perform tasks of the lagging simulator. E.g. if there are 100,000 users connected and
10,000 simulators available each simulator should be responsible for 10 users. But the ac-
complishment of physical calculations like collision detection demands multiple context
information that seems to be not so easily parallelizable on different simulators/comput-
ers. Another approach could be to leave expensive calculations to the viewer. In terms
of collision detection that seems to be an impossible task because of network latency. But
maybe there are other calculations that can be carried out by the viewers instead of the
servers. Maybe the Mono surrounding for scripting can be migrated and carried out by
the viewers. Even with the planned new architecture user amounts within one region
should remain fairly restricted. But maybe with a grid system and better algorithms in
Region Domains the amount of parallel active users can be increased a lot. On the other
hand the server system could stop expensive calculations when the amount of users ex-
ceeds a certain amount. E.g. collision detection may be not be equally important as fluid
displaying of graphics and communication.

Another point are maintenance tasks for servers. It should not be obliging to shut
down a simulator for an update that is necessary quite regularly. Instead it should be
possible to start a new and an old instance of the simulator and to switch dynamically
from the old to the new instance. Sophisticated protocols for the migration of current data

between the old and the new instance would be compulsory.

17

5.2 Objects And Extensibility 5 CRITICAL ANALYSIS

5.2 Objects And Extensibility
5.2.1 Problems

In has been explained in section 2.5.1 that objects in Second Life consist of so called prim-
itives that can be linked with a maximum count of 31 primitives per dynamic object. A
problem of this approach is that existing 3D models of other file formats e.g. the obj file
format ([36]) cannot be imported into Second Life. As today’s engineering processes of
e.g. buildings and cars employ CAD proceedings that yield perfect 3D models it is a pity
that those models cannot be used inside of SL. If they should be used in SL they will have
to be completely rebuild inside of SL. Additionally the amount of primitives inside a re-
gion is restricted meaning that designers of 3D objects in SL always have to bear in mind
not to use too many primitives. Under these circumstances it is a fairly complex task to
build complex models in Second Life. Also, not everybody may build objects in a region.
The owner may decide who is allowed to build objects or to put objects into a region. As
avatars can exploit permissions to use harmful or ugly objects most owners tend to restrict
permissions. The result is watch-only regions.

Another issue is restricted extensibility caused by constrained communication possi-
bilities of SL with the Internet. If for instance a developer wants to build a wallpaper that
changes its texture (image) every 2 minutes then the displaying object must contain all
displayed textures. There is no simple way to dynamically download images from the
Internet and use them as dynamic textures in SL (Matt Biddulph, 2006, [26]). The simple
reason is that Linden Labs gets 10L$ per upload of a texture. Those imported images can
be observed more easily and gives Linden Labs a legal security (Dynamic textures could
be easily exploited to display porn (Second Life Wiki, 2007, [27]) or spam). Another exam-
ple for an extensibility difficulty is to display dynamic text information from the Internet.
The whole manufacturing chain suffers from severe processing lacks. At first there is no
simple possibility to display text in Second Life. A script can echo out text to the chat
system. But for instance large billboards that can display text are scarce goods inside of
SL. If they can display text the size of them is about 10x40 characters based on 10x40 small
character textures that are set dynamically according to the contents. Additionally LSL
makes it difficult to import information from the Internet because it is missing the sup-
port of XML libraries or web services directly. If a web service should be used inside of
SL it is fairly difficult (see section 3.2.4).

All of these reasons lead to the impression that the current Second Life is analogue

to Web 1.0. A region owner provides information like sophisticated 3D models (e.g. the

18

6 SUMMARY AND CONCLUSION

Cologne Dome [37]) that cannot be changed or commented by an average visitor. But
visitors tend only to come back to a region if something is changing inside of the region
or social activities take place. Thus a region owner has to spend lots of time to entertain
visitors. If there was an easy way for an owner to add dynamic content to its region or
easier means for user generated content it would be easier for region owners to provide

interesting offers to visitors and particularly to keep visitors coming back.

5.2.2 Improvement Notes
The writer would recommendate ...

1. ...to support web services e.g. RSS feeds with easy to use LSL XML or web service
APIs.

2. ...to provide billboards or OpenGL text views for dynamic text contents.

3. ..to provide an easy import mechanism for 3D file formats e.g. the obj file format
and that those objects can be dynamically downloaded and used from the Internet.
This would support object-focused interaction of enginering tasks. For instance en-
gineering teams with dispersed members could meet and discuss about 3D models
of their CAD projects in Second Life (see e.g. Hindmarsh et al [29]). Additionally

lots of existing, sophisticated 3D models could be reused in SL.
4. ... to provide means for dynamic textures from the Internet.

If Linden Labs are afraid of legal problems with dynamic contents then the future
plans to open up the server platform (see section 5.1.2) should take the legal burden from
Linden Labs and put it in the responsibility of server operators. However, dynamic and

user generated content is a must for Internet applications nowadays.

6 Summary and Conclusion

6.1 Summary

Second Life brought a successful virtual world to the Internet. Technically it founds on
a client server model in which a Second Life viewer communicates with a server called
simulator. One simulator serves one region. Avatars of users whose viewers connect with
the same simulator are in the same region and can by means of the simulator interact

with each other by chat or physical actions. A simulator acts as a proxy for viewers to

19

6.2 Conclusion 6 SUMMARY AND CONCLUSION

data sources like assets or login data. Assets are data like textures, LSL scripts or land-
marks that are stored in databases. Viewers communicate with simulators by the means
of circuits over UDP. Simulators offer physical interaction with the help of a physical li-
brary called Havok. It also runs a Mono .NET platform implementation to execute scripts
written in the scripting language LSL. Scripts are run as microthreads inside of Mono
(see section 3.1). LSL itself is a state-driven scripting language that offers among others
an API for 3D manipulation, In-world and Internet communication functionalities. Sec-
ond Life recently employed a new searching machine concept in which assets like objects,
avatar profiles, events etc. can be found by the help of an In-world search that is based on
Google appliances. Each asset that is searchable is rendered into a static HTML page that
is indexed by the Google appliances. In section 5.1 a critical analysis was presented that il-
lustrated scalability problems of the current Second Life Grid implementation, presented
new server concepts of Linden Labs and finally gave some improvement ideas. Section
5.2 explicated problems in Second Life like displaying of dynamic elements like text and
images downloaded from the Internet and the lacking ability to use 3D file formats in

Second Life. Finally some improvement notes for better extensibility are given.

6.2 Conclusion

Second Life has been groundbreaking in terms of a first impression and implementation
of a potential 3D Internet. But SL cannot be called the 3D Internet as it is not free like the
real Internet. It still is proprietary software that is owned by only one company. Nobody
can tell today how Second Life will develop over the next few years. But Second Life
gives an idea how a 3D Internet can be realised and yields experiences what has to be
kept in mind regarding technical foundations. It seems that regions in Second Life were
not designed to work with a large amount of users what can be infered from the fact that
for simulators there is a max number of 40 users for a good performance of a region. Legal
problems seem to hinder the integration of dynamic contents from the web.

With the success of Second Life now comes the pressure to think about a more scal-
able grid for Second Life. Future implementations of virtual worlds should consider the

successes and the mistakes that Linden Labs made when they planned Second Life.

20

REFERENCES REFERENCES

References

[1] Second Life Wiki, 2007, Glossary - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/Glossary> [Accessed 12. December, 2007]

[2] Second Life Wiki, 2007, Server architecture - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com/wiki/Server_architecture> [Accessed 12. December,
2007]

[3] Second Life KB, 2007, About the Heterogenous Grid, Available from:
<https:/ /support.secondlife.com/ics/support/ KBAnswer.asp?questionID=4560>
[Accessed 12. December, 2007]

[4] Second Life Wiki, 2007, Image System - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com/wiki/Image_System> [Accessed 12. December, 2007]

[5] Second Life Wiki, 2007, Asset System - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com/wiki/Asset_System> [Accessed 12. December, 2007]

[6] Second Life Wiki, 2007, Circuits - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/Circuit> [Accessed 12. December, 2007]

[7] Second Life Wiki, 2007, Message - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/Message> [Accessed 12. December, 2007]

[8] Secondlife.com, 2007, The Technology behind the Second Life Platform, Available from:
<http://s3.amazonaws.com/download.grid.secondlife.com/Fact_Sheet_Technology.pdf>
[Accessed 12. December, 2007]

[9] Second Life Wiki, 2007, Havok 4 Beta Home - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com/wiki/Havok_4_Beta_Home> [Accessed 12. Decem-
ber, 2007]

[10] Second Life Wiki, 2007, What’s Changed With Havok4 - Second Life Wiki, Available
from: <https://wiki.secondlife.com/wiki/What%27s_Changed With_Havok4>
[Accessed 12. December, 2007]

[11] Havok, 2007, Havok - Home, Available from: <http://www.havok.com> [Accessed
20. December, 2007]

21

REFERENCES REFERENCES

[12]

[13]

[14]

[17]

[18]

Havok, 2007, Havok - Havok 5 Launches Integrated Character & Physics Solution, Avail-
able from: <http://http://www.havok.com/content/view/538/53/> [Accessed
20. December, 2007]

Wikipedia, 2007, Second Life - Wikipedia, the free encyclopedia, Available from:
<http:/ /en.wikipedia.org/wiki/Second_life> [Accessed 20. December, 2007]

Berkeley, 2007, SETI@home, Available from: <http://setiathome.berkeley.edu/>
[Accessed 20. December, 2007]

Official Linden Blog, 2007, Microthreading Mono - Official Linden Blog, Available
from: <http://blog.secondlife.com/2006/05/05/microthreading-mono/> [Ac-
cessed 12. December, 2007]

Second Life Wiki, 2007, Category:LSL List - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/List> [Accessed 21. December, 2007]

Second Life Wiki, 2007, State - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/State> [Accessed 27. December, 2007]

Second Life Wiki, 2007, Category:LSL Events - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com/wiki/Category:LSL_Events> [Accessed 27. Decem-
ber, 2007]

LSL Wik, 2007, LSL Wiki XMLRPC, Available from:
<http:/ /www.lslwiki.net/Islwiki/wakka.php?wakka=xmlrpc> [Accessed 28.
December, 2007]

Second Life Wiki, 2007, New Search Currently Under Development - Official Lin-
den Blog, Available from: <http://blog.secondlife.com/2007/10/19/new-search-

currently-under-development/> [Accessed 12. December, 2007]

Technology Review, 2007, Better Search in Virtual Worlds, Available from:
<http:/ /www.technologyreview.com/Infotech /19664 /> [Accessed 12. December,
2007]

Second Life KB, 2007, New Search FAQ, Available from:
<https:/ /support.secondlife.com/ics/support/ KBAnswer.asp?question]D=4722>
[Accessed 12. December, 2007]

22

REFERENCES REFERENCES

[27]

[30]

[31]

Second Life Forum, 2003, Second Life 1.0 Available today!, Available from:
<http:/ /forums.secondlife.com/showthread.php?t=3297> [Accessed 29. Decem-
ber, 2007]

Second Life KB, 2007, How many avatars can I have on my region
at once without causing serious problems with lag?, Available from:
<https:/ /support.secondlife.com/ics/support/KBAnswer.asp?question]D=4426>
[Accessed 12. December, 2007]

Open SL, 2007, Main ~ Page - OpenSim, Available from:
<http:/ /opensimulator.org/wiki/Main_Page> [Accessed 29. December, 2007]

Matt Biddulph, 2006, Alas, Second Life! Web 2.0 in a virtual world, Available
from: <http://www.hackdiary.com/archives/000085.html> [Accessed 30. Decem-
ber, 2007]

Second Life Wiki, 2007, Web Textures - Second Life Wiki, Available from:
<https:/ /wiki.secondlife.com /wiki/Web_Textures> [Accessed 12. December,
2007]

Second Life Wiki, 2007, Object - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/Object> [Accessed 12. December, 2007]

Hindmarsh, J., Fraser, M., Heath, C., Benford, S., Greenhalgh, C. 2000. Object-
Focused Interaction in Collaborative Virtual Environment, In ACM Transactions on
Computer-Human-Interaction, Vol. 7, No. 4, December 2000, Pages 477-509

Second Life Wiki, 2007, Primitive - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com/wiki/Primitive> [Accessed 12. December, 2007]

Second Life Wiki, 2007, Source downloads - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/Source_downloads> [Accessed 30. December,
2007]

Second Life Wiki, 2007, UUID - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com /wiki/UUID> [Accessed 31. December, 2007]

Second Life Wiki, 2007, User:Zero Linden/Office
Hours/Discussion - Second Life Wiki, Available from:
<https:/ /wiki.secondlife.com /wiki/User:Zero_Linden/Office_Hours/Discussion>
[Accessed 31. December, 2007]

23

REFERENCES REFERENCES

[34]

[35]

[37]

Christian Scholz, 2007, Linden Lab diskutiert die neue Second Life Architektur - mr-
topf.de, Available from: <http://mrtopf.de/blog/secondlife/linden-lab-diskutiert-

die-neue-second-life-architektur/> [Accessed 31. December, 2007]

Second Life Wiki, 2007, Architecture Working Group - Second Life Wiki, Available from:
<http:/ /wiki.secondlife.com/wiki/ Architecture_Working_Group> [Accessed 31.
December, 2007]

Florida State University, 2007, Object Files (.0bj), Available from:
<http:/ /www.csit.fsu.edu/~burkardt/txt/obj_format.txt> [Accessed 31. De-
cember, 2007]

Grid Grind, 2007, Historical Cologne Cathedral Goes Virtual, Available from:
<http:/ /www.gridgrind.com /?p=177> [Accessed 31. December, 2007]

Figures:

[Figurel] Copied from: <http://wiki.secondlife.com/w/images/b/be/SLGArchWG1-

01-Grid_Now.jpg> [Accessed 12. December, 2007]

[Figure2] Copied from: <http://wiki.secondlife.com/w/images/b/be/SLGArchWG1-

24-SI._Grid_2008.jpg> [Accessed 12. December, 2007]

24

